

# 2015 Air Quality Annual Status Report (ASR)

In fulfilment of Part IV of the Environment Act 1995
Local Air Quality Management

May 2016

| Local Authority Officer | Alex Bulleid                                |
|-------------------------|---------------------------------------------|
| Department              | Environmental Health and Licensing          |
| Address                 | Civic Centre, Paris Street, Exeter, EX1 1RQ |
| Telephone               | 01392 265718                                |
| E-mail                  | Alex.bulleid@exeter.gov.uk                  |
| Report Reference number | ASR2015                                     |
| Date                    | May 2016                                    |

## **Executive Summary: Air Quality in Our Area**

Air pollution is associated with a number of adverse health impacts. It is recognised as a contributing factor in the onset of heart disease and cancer. Additionally, air pollution particularly affects the most vulnerable in society: children and older people, and those with heart and lung conditions. Nationally it has been shown that there is often a strong correlation with equalities issues, because areas with poor air quality are also often the less affluent areas<sup>1,2</sup>.

The annual health cost to society of the impacts of particulate matter alone in the UK is estimated to be around £16 billion<sup>3</sup>.

#### **Air Quality in Exeter**

Air quality in Exeter is mainly good, with just a small number of hot spots where levels of nitrogen dioxide are above government objectives. These are at Livery Dole junction, East Wonford Hill, Honiton Road and the Blackboy Road/Pinhoe Road junction. All these are included within Exeter's Air Quality Management Area, an area where the Council will bring forward and facilitate actions to improve air quality. Further details of the Air Quality Management Area, and the Council's Action Plan are available online at <a href="https://exeter.gov.uk/airpollution/">https://exeter.gov.uk/airpollution/</a>. During 2016 the Council will be working on an updated Air Quality Action Plan, together with partners like Devon County Council, and Public Health England.

The monitoring that the Council has done shows that concentrations of nitrogen dioxide have been falling throughout the city since around 2009, despite significant housing and commercial development over the same period. No new sources of pollution have been identified that are likely to cause new areas to exceed the objective levels for any form of air pollution.

#### **Actions to Improve Air Quality**

Exeter City Council took forward a number of measures during 2015 in pursuit of improving local air quality. Key completed measures are:

<sup>&</sup>lt;sup>1</sup> Environmental equity, air quality, socioeconomic status and respiratory health, 2010

<sup>&</sup>lt;sup>2</sup> Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006

<sup>&</sup>lt;sup>3</sup> Defra. Abatement cost guidance for valuing changes in air quality, May 2013

- Newcourt station.
- Cranbrook station.
- Tithebarn link for new bus route to Cranbrook.
- Car clubs on new areas of development.
- Personal exposure projects to highlight the beneficial effects of alternative travel modes, or travel routes on personal exposure to PM<sub>2.5</sub>.
- Taxi emissions licensing standards.
- Reductions in Exeter City Council fleet fuel use.
- Bridge road widening.

Exeter City Council expects the following measures to be completed in 2016:

- Work to update the Air Quality Action Plan, to include ambitious targets for reduction of NO<sub>2</sub> concentrations and PM<sub>2.5</sub> exposure.
- Ide P&R.
- Car club bike hire scheme.
- Marsh Barton Station.
- Bus Real-Time Information.
- Ecostars scheme to reduce emissions from commercial vehicle fleets.

#### **Local Priorities and Challenges**

The City Council's challenge for 2016 is to implement existing actions to reduce air pollution in a climate where funding is harder to find, and at the same time to prepare a new updated air quality action plan for the city.

#### How to Get Involved

Everyone in Exeter can take action on a personal level to improve our air quality. Some examples are shown below.

#### Walk or cycle

Replacing a car journey by walking or cycling helps reduce traffic and traffic emissions. It has proven health and mental health benefits too.

#### Take public transport or carshare

For longer journeys, why not use public transport or car share?

#### And if you have to use your car...

Make sure your tyre pressure is correct (low tyre pressure increases fuel use, fuel costs and emissions).

Think about whether you need to use the air conditioning. Using it increases fuel consumption by 30%; driving with windows open only increases it by 5%.

Using a roof rack on your car can increase fuel consumption by 20 to 30%. Bicycles are better attached to the back of the car.

If you need to buy a car, check its fuel economy. With an ultra-low emission vehicle (ULEV) you will use less fuel and produce less exhaust fumes.

#### Go for local produce!

Transporting goods a long way creates more air pollution than transporting them short distances. Try to buy locally produced goods and eat local foods that are in season: transporting and producing them doesn't generate as much air pollution.

#### Tell us what you think

Consultation on the new AQAP will also take place during the year, which will give individuals the opportunity to comment on and direct future actions to improve air quality. Information will be made available online at <a href="https://exeter.gov.uk/airpollution/">https://exeter.gov.uk/airpollution/</a>, in local media and via the Exeter Community Forum.

## **Table of Contents**

| Execut  | ıtive Summary: Air Quality in Our Area                                    | i  |
|---------|---------------------------------------------------------------------------|----|
| Air C   | Quality in Exeter                                                         |    |
| Actio   | ons to Improve Air Quality                                                |    |
| Loca    | al Priorities and Challenges                                              | i  |
| How     | v to Get Involved                                                         | i  |
| 1 L     | ocal Air Quality Management                                               | 1  |
| 2 A     | Actions to Improve Air Quality                                            | 2  |
| 2.1     | Air Quality Management Areas                                              | 2  |
| 2.2     | Progress and Impact of Measures to address Air Quality in Exeter          | 2  |
| 2.3     | PM <sub>2.5</sub> – Local Authority Approach to Reducing Emissions and or |    |
| Cond    | ncentrations                                                              | 9  |
| 3 A     | Air Quality Monitoring Data and Comparison with Air Quality               |    |
| Object  | tives and National Compliance                                             | 10 |
| 3.1     | Summary of Monitoring Undertaken                                          | 10 |
| 3.      | 3.1.1 Automatic Monitoring Sites                                          | 10 |
| 3.      | Non-Automatic Monitoring Sites                                            |    |
| 3.2     |                                                                           |    |
|         | 3.2.1 Nitrogen Dioxide (NO <sub>2</sub> )                                 |    |
|         | 3.2.2 Particulate Matter (PM <sub>10</sub> )                              |    |
|         | ndix A: Monitoring Results                                                |    |
|         | ndix B: Full Monthly Diffusion Tube Results for 2015                      |    |
|         | ndix C: Supporting Technical Information and Air Quality Moniton          |    |
| Data Q  | QA/QC                                                                     | 31 |
| Appen   | ndix D: Maps of Monitoring Locations                                      | 37 |
| Appen   | ndix E: Summary of Air Quality Objectives in England                      | 38 |
| Glossa  | ary of Terms                                                              | 39 |
| Refere  | ences                                                                     | 41 |
| List of | f Tables                                                                  |    |
| Table 2 | 2.1 – Declared Air Quality Management Areas                               | 2  |
|         | 2.2 - Progress on Measures to Improve Air Quality                         | F  |

### 1 Local Air Quality Management

This report provides an overview of air quality in Exeter during 2015. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Exeter City Council to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM in England can be found in Table E.1 in Appendix E.

## 2 Actions to Improve Air Quality

#### 2.1 Air Quality Management Areas

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority must prepare an Air Quality Action Plan (AQAP) within 12-18 months setting out measures it intends to put in place in pursuit of the objectives.

A summary of AQMAs declared by Exeter City Council can be found in Table 2.1. Further information related to declared or revoked AQMAs, including maps of AQMA boundaries are available online at <a href="https://exeter.gov.uk/airpollution/">https://exeter.gov.uk/airpollution/</a>

| AQMA<br>Name   | Pollutants<br>and Air<br>Quality<br>Objectives                                     | City /<br>Town | One Line Description                                                        | Action Plan                                                          |  |
|----------------|------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| Exeter<br>AQMA | <ul> <li>NO<sub>2</sub> annual mean</li> <li>NO<sub>2</sub> hourly mean</li> </ul> | Exeter         | An area encompassing the radial routes into the city and other major routes | Exeter Air Quality Action Plan  https://exeter.gov. uk/airpollution/ |  |

**Table 2.1 – Declared Air Quality Management Areas** 

## 2.2 Progress and Impact of Measures to address Air Quality in Exeter

Exeter City Council has taken forward a number of measures during the current reporting year of 2015 in pursuit of improving local air quality. Details of all measures completed, in progress or planned are set out in Table 2.2. More detail on these measures can be found in the Exeter Air Quality Action Plans. Key completed measures are:

- Newcourt station. A new station has opened on the Exmouth line at the Newcourt development.
- Cranbrook station. The station allows residents of the new settlement at Cranbrook to travel into Exeter by train.

- Tithebarn link for new bus route to Cranbrook. This will facilitate a new, high speed and high quality bus route to Cranbrook, via the new developments at Monkerton. It will also allow residents of central Exeter to reach the new Science Park by bus.
- Car clubs. Car clubs have been expanded onto new areas of development.
- Personal exposure projects. The Council has been involved in projects to highlight the beneficial effects of alternative travel modes, or travel routes on personal exposure to PM<sub>2.5</sub>.
- Taxi emissions. New licensing standards will significantly reduce emissions from hackney carriages.
- Exeter City Council fleet. Fuel use in the Council's waste fleet has been reduced by 7% as a result of new technology to improve driving style.
- Bridge road widening. This will reduce congestion along Bridge Road, and improve facilities for walking and cycling along this route.

Progress on the following measures has been slower than expected due to:

- Local Transport Plan. Funding available for new highway schemes identified to improve air quality is now very limited. In real terms the level of Local Transport Plan funding is around a 1/3 of that in previous years. And the limited funding remaining is under pressure to develop bids and help match fund major schemes. The viability of new developments and contributions to highways infrastructure has also been an issue. But schemes are being delivered, such as new rail stations and key highway infrastructure around Exeter which is either under construction or opened. Future funding bids though the LEP are looking to support new cycling infrastructure. But in order for local sustainable travel projects to gain future funding it will be important to keep stressing their air quality and public health benefits and take advantage of bids and funding opportunities through external sources and local plans\CIL.
- ECC fleet. Bids for external funding to replace vehicles with ultra-low emissions vehicles have not been successful, which has slowed the pace of fleet upgrades.

Exeter City Council expects the following measures to be completed over the course of the next reporting year:

- Ide P&R. This will give a new public transport alternative to those entering the city from the A30.
- Car club bikes. A new bike hire scheme is to be introduced by the car club company ExeCoCars. This will provide bikes for hire at key points in the city.
- Marsh Barton Station. This will create a new stop on the Exeter to Newton Abbot and Plymouth line, which can be used by those working on Marsh Barton and will also serve the adjacent new housing proposed within Teignbridge District Council's area.
- Bus Real-Time Information. This will improve the information available to passengers and increase the desirability of bus travel.
- Ecostars. This is a project to reduce emissions from commercial vehicle fleets in Devon.

Exeter City Council's priority for the coming year is to review, consult upon and publish a new Air Quality Action Plan, led by an AQAP Steering Group. Subject to agreement, the plan may cover a wider area than just the Exeter City Council boundary, for example reflecting the travel to work area. It will set ambitious targets for reduction of NO<sub>2</sub> concentrations and PM<sub>2.5</sub> exposure. Further information on the AQAP steering group is available in Appendix C.3.

Table 2.2 – Progress on Measures to Improve Air Quality

| Measure<br>No. | Measure                                                          | EU Category                                 | EU<br>Classification                                                                  | Lead Authority | Planning<br>Phase | Implementation<br>Phase | Key<br>Performance<br>Indicator                                                                                                  | Target Pollution<br>Reduction in the<br>AQMA                                                                | Progress<br>to Date                                                                           | Estimated<br>Completion<br>Date                 | Comments                                                                                                                    |
|----------------|------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------|----------------|-------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1              | Public health<br>and<br>community<br>awareness                   | Public<br>Information                       | Other                                                                                 | ECC            | Complete          | 2016                    | Undertake<br>personal<br>exposure study<br>and use results to<br>raise public<br>awareness                                       | N/A                                                                                                         | Pilot studies completed                                                                       | December<br>2016                                | The aim is to encourage and support behavioural change on an individual level                                               |
| 2              | ECC vehicle<br>fleet                                             | Promoting Low<br>Emissions<br>Transport     | Public vehicle<br>procurement –<br>Prioritising<br>uptake of low<br>emission vehicles | ECC            | Complete          | 2016-2018               | Purchase the lowest emissions vehicle available that meets the needs of the vehicle user                                         | Unquantified<br>because of difficulty<br>in estimating<br>contribution of<br>emissions from<br>ECC vehicles | One electric car purchased in 2015 7% reduction in waste fleet fuel use due to new technology | Rolling<br>program to be<br>reviewed in<br>2018 |                                                                                                                             |
| 3              | ECC parking strategy                                             | Traffic<br>Management                       | Other                                                                                 | ECC            | 2015              | 2016 - 2026             | Implement Action<br>Plan. Impact on<br>congestion (traffic<br>volumes and<br>speeds at peak<br>hours) will be<br>monitored       |                                                                                                             | New strategy<br>adopted<br>March 2016                                                         | 2026                                            | http://committees<br>.exeter.gov.uk/d<br>ocuments/s5063<br>1/ECC%20Parki<br>ng%20Strategy<br>%20Draft%20Fe<br>b%2016%20Fina |
| 4              | Highways<br>works, reduce<br>congestion,<br>new junctions<br>etc | Transport<br>Planning and<br>infrastructure | Other                                                                                 | DCC            | Ongoing           | 2011-2026 (LTP3 period) | Improvements to Alphington Corridor     Exhibition Way link     Use of real-time technology and signage     Bridge Road widening | 1% reduction in emissions in AQMA based upon measures contained in 'LES lite'                               | Tithebarn link<br>completed and<br>Bridge Road<br>works<br>commenced                          | 2026                                            | https://exeter.go<br>v.uk/airpollution/                                                                                     |

| Measure<br>No. | Measure                                                                            | EU Category                               | EU<br>Classification                                     | Lead Authority | Planning<br>Phase | Implementation<br>Phase    | Key<br>Performance<br>Indicator                                                                                                                                      | Target Pollution<br>Reduction in the<br>AQMA                                                 | Progress<br>to Date                                                                                                                                                       | Estimated<br>Completion<br>Date | Comments                                                                                  |
|----------------|------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------|-------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------|
| 5              | Travel<br>planning<br>support, car<br>clubs (inc<br>bikes) and<br>Park &<br>Change | Alternatives to<br>Private Vehicle<br>Use | Car and lift<br>sharing schemes<br>&<br>Car Clubs        | DCC            | Ongoing           | 2011-2026 (LTP3 period)    | Developers to contribute towards establishment of car clubs     Introduction of bike hire scheme     Provide travel planning support service where funding available | 1% reduction in emissions in AQMA based upon measures contained in 'LES lite'                | <ul> <li>Car Clubs established at Newcourt and Rougemont Park</li> <li>Contribution s received from developers for travel plans at 8 housing sites in the city</li> </ul> | 2026                            | https://exeter.go<br>v.uk/airpollution/                                                   |
| 6              | Electric<br>vehicle<br>charging                                                    | Promoting Low<br>Emissions<br>Transport   | Procuring<br>alternative<br>refuelling<br>infrastructure | ECC            | Complete          | 2014-2019                  | Implement<br>Electric Vehicle<br>Strategy                                                                                                                            | 1% reduction in<br>emissions in AQMA<br>based upon<br>measures<br>contained in 'LES<br>lite' | Charging<br>points<br>installed in 6<br>car parks                                                                                                                         | 2019                            | https://exeter.go<br>v.uk/media/1616/<br>ehod-electric-<br>vehicle-strategy-<br>final.pdf |
| 7              | Park and<br>Ride                                                                   | Alternatives to<br>Private Vehicle<br>Use | Bus based Park<br>& Ride                                 | DCC            | Ongoing           | 2011-2026 (LTP3<br>period) | Introduce new Park and Ride at Ide     Maintain and expand existing P&R schemes where possible                                                                       | Quantified at<br>planning stage (Ide<br>P&R) as not<br>significant                           | Planning<br>application<br>made (Ide)                                                                                                                                     | 2026                            | https://exeter.go<br>v.uk/airpollution/                                                   |
| 8              | Bus, smart<br>ticketing, RTI,<br>new services                                      | Alternatives to<br>Private Vehicle<br>Use | Other                                                    | DCC            | Ongoing           | 2011-2026 (LTP3<br>period) | Introduce real-time information     Investigate options for smart ticketing     New and extended services to major areas of development                              | 1% reduction in emissions in AQMA based upon measures contained in 'LES lite'                | Real-time information infrastructur e being installed at bus stops     Newcourt services operating                                                                        | 2026                            | https://exeter.go<br>v.uk/airpollution/                                                   |

| Measure<br>No. | Measure                                            | EU Category                                 | EU<br>Classification                                                                     | Lead Authority | Planning<br>Phase     | Implementation<br>Phase           | Key<br>Performance<br>Indicator                                                                                                              | Target Pollution<br>Reduction in the<br>AQMA                                                 | Progress<br>to Date                                                                                                             | Estimated<br>Completion<br>Date | Comments                                                                                                                                                 |
|----------------|----------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------|----------------|-----------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9              | Bus links and<br>bus priority                      | Transport<br>planning and<br>Infrastructure | Bus route improvements                                                                   | DCC            | Ongoing               | 2011-2026 (LTP3<br>period)        | Topsham Road bus priority works Continue to identify options for bus priority improvements                                                   | 1% reduction in<br>emissions in AQMA<br>based upon<br>measures<br>contained in 'LES<br>lite' | London Inn<br>Square bus<br>priority works<br>complete                                                                          | 2026                            | https://exeter.go<br>v.uk/airpollution/                                                                                                                  |
| 10             | Walking and cycling infrastructure                 | Promoting<br>Travel<br>Alternatives         | Promotion of<br>cycling &<br>Promotion of<br>walking                                     | DCC            | Complete              | 2010-2020                         | 20% of journeys<br>to work by bike     20% of journeys<br>to primary<br>school by bike     30% of journeys<br>to secondary<br>school by bike | Not quantified                                                                               | Exeter Cycle Strategy and Exeter Walking Strategy published and developer contributions towards key infrastructure improvements | 2020                            | http://www.devo<br>n.gov.uk/eldf-<br>exeter-cycle-<br>strategy.pdf<br>and<br>http://www.devo<br>n.gov.uk/exeter-<br>walking-strategy-<br>august-2012.pdf |
| 11             | Devon Metro                                        | Alternatives to<br>Private Vehicle<br>Use   | Rail based Park<br>& Ride                                                                | DCC            | Ongoing               | 2011-2026 (LTP3 period initially) | Marsh Barton<br>station open                                                                                                                 | 1% reduction in<br>emissions in AQMA<br>based upon<br>measures<br>contained in 'LES<br>lite' | Cranbrook<br>and Newcourt<br>Stations<br>complete                                                                               | ongoing                         | https://exeter.go<br>v.uk/airpollution/<br>and<br>http://www.devo<br>n.gov.uk/devon<br>metro_briefing.p                                                  |
| 12             | Taxi licensing                                     | Promoting Low<br>Emission<br>Transport      | Taxi licensing conditions                                                                | ECC            | complete              | 2015-2020                         | At least 50% of<br>hackney carriage<br>fleet to be ULEV<br>or ZEV                                                                            | 1% reduction in<br>emissions in AQMA<br>based upon<br>measures<br>contained in 'LES<br>lite' | Emissions<br>standard set in<br>policy                                                                                          | 2020                            | https://exeter.go<br>v.uk/media/1428/<br>taxi-policy-<br>2015.pdf                                                                                        |
| 13             | Future<br>developments<br>, and travel<br>planning | Promoting<br>Travel<br>Alternatives         | Encourage/Facilit<br>ate home working<br>&<br>Personalised<br>travel planning &<br>Other | ECC / DCC      | ?? see email<br>to RH | ongoing                           | Developers to be<br>offered travel<br>planning support<br>by DCC                                                                             | 1% reduction in<br>emissions in AQMA<br>based upon<br>measures<br>contained in 'LES<br>lite' | ??? see email<br>to RH                                                                                                          | ongoing                         |                                                                                                                                                          |

| Measure<br>No. | Measure                                                                              | EU Category                                      | EU<br>Classification                                                                  | Lead Authority | Planning<br>Phase | Implementation<br>Phase | Key<br>Performance<br>Indicator                                                                                                           | Target Pollution<br>Reduction in the<br>AQMA    | Progress<br>to Date                                                                                                                                                             | Estimated<br>Completion<br>Date | Comments                                                                                                                  |
|----------------|--------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------|----------------|-------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 14             | Wider Exeter<br>travel to work<br>area                                               | Policy Guidance<br>and<br>Development            | Regional groups<br>co-ordinating<br>programmes to<br>develop area-<br>wide strategies | ECC            | 2016              | 2017-2022               | To be determined after planning phase completed                                                                                           | To be determined after planning phase completed | Initial<br>discussions<br>with<br>neighbouring<br>authorities                                                                                                                   | 2022                            | Working more closely with neighbouring authorities to integrate actions,                                                  |
| 15             | Freight Quality partnership (FQP), Ecostars                                          | Vehicle Fleet<br>Efficiency                      | Fleet efficiency<br>and recognition<br>schemes                                        | ECC / DCC      | 2015              | 2016                    | Five businesses<br>within Exeter to<br>sign up to<br>EcoStars                                                                             | Unknown                                         | One fleet<br>committed to<br>sign up to<br>scheme                                                                                                                               | 2016                            | FQP is a DCC<br>responsibility to<br>take forward, if<br>funding available                                                |
| 16             | Wider projects, including Exeter City Futures (ECF) and Low Carbon Task Force (LCTF) | Policy Guidance<br>and<br>Development<br>Control | Other policy                                                                          | ECC            | ongoing           | ongoing                 | To lobby for local air quality to be considered in wider projects to improve the sustainability of the city and the greater Exeter region | Unknown                                         | officers meeting regularly with Exeter City Futures and the LCTF, plus seeking other opportunities 100 volunteers to trial 'Lightfoot' technology in private cars (ECF project) | ongoing                         | http://www.exete<br>randeastdevon.g<br>ov.uk/Low-<br>Carbon-Task-<br>Force%20<br>and<br>http://exetercityfu<br>tures.com/ |

## 2.3 PM<sub>2.5</sub> – Local Authority Approach to Reducing Emissions and or Concentrations

As detailed in Policy Guidance LAQM.PG16 (Chapter 7), local authorities are expected to work towards reducing emissions and/or concentrations of PM<sub>2.5</sub> (particulate matter with an aerodynamic diameter of 2.5µm or less). There is clear evidence that PM<sub>2.5</sub> has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases.

There is no direct monitoring of PM<sub>2.5</sub> in Exeter. However it is possible to estimate concentrations based upon local PM<sub>10</sub> data using the correction factor in TG(16). This method suggests that PM<sub>2.5</sub> concentrations at Exeter RAMM and Alphingtion Street are 13.5  $\mu$ g/m³. The annual average EU limit value for PM<sub>2.5</sub> is 25  $\mu$ g/m³ so there is no suggestion that this level is being exceeded in Exeter. However the council still has a duty to reduce emissions of and exposure to this pollutant.

During 2016, Exeter City Council will be taking the measures described in Table 2.2 that will address PM<sub>2.5</sub> as well as NO<sub>2</sub>. The measures expected to have the most significant effect on PM<sub>2.5</sub> are those which encourage modal shift, or uptake of ULEVs such as measures 1, 5, 6, 10, 11, 12, 13, 15 and 16. During the year the Council will also be working on an updated AQAP that will include explicit reference to PM<sub>2.5</sub>, and set out the actions that will be taken to reduce PM<sub>2.5</sub> during the next five years. This will involve close partnership working with public health professionals, which is reflected in the make-up of the steering group (Appendix C.3).

## 3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

#### 3.1 Summary of Monitoring Undertaken

#### 3.1.1 Automatic Monitoring Sites

This section sets out what monitoring has taken place and how it compares with objectives.

Exeter City Council undertook automatic (continuous) monitoring at 2 sites during 2015. Table A.1 in Appendix A shows the details of the sites. National monitoring results are available at <a href="https://uk-air.defra.gov.uk/">https://uk-air.defra.gov.uk/</a>. At the start of 2015, Exeter City Council ceased monitoring CO and SO2 on the grounds that the concentrations of these pollutants were substantially below the objective levels, and had been so since monitoring began. There was no evidence of a trend of increasing concentrations of either pollutant (Exeter City Council 2015).

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on how the monitors are calibrated and how the data has been adjusted are included in Appendix C.

#### 3.1.2 Non-Automatic Monitoring Sites

Exeter City Council undertook non- automatic (passive) monitoring of NO<sub>2</sub> at 62 sites during 2015. Table A.2 in Appendix A shows the details of the sites. There were no changes to the monitoring network in 2015.

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on Quality Assurance/Quality Control (QA/QC) and bias adjustment for the diffusion tubes are included in Appendix C.

#### 3.2 Individual Pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for "annualisation" and bias. Further details on adjustments are provided in Appendix C.

#### 3.2.1 Nitrogen Dioxide (NO<sub>2</sub>)

Table A.3 in Appendix A compares the ratified and adjusted monitored NO<sub>2</sub> annual mean concentrations for the past 5 years with the air quality objective of 40µg/m<sup>3</sup>.

For diffusion tubes, the full 2015 dataset of monthly mean values is provided in Appendix B.

Table A.4 in Appendix A compares the ratified continuous monitored  $NO_2$  hourly mean concentrations for the past 5 years with the air quality objective of  $200\mu g/m^3$ , not to be exceeded more than 18 times per year. Figure A.4.1 shows the longer-term trend in annual mean concentrations at 6 sites with the longest continuous data record.

The data shows that just four locations measured an exceedence of the annual objective in 2015. Three of these are at relevant locations (DT40 Pinhoe Road (Polsloe Road), DT53 East Wonford Hill and DT48 Livery Dole). The fourth (DT64 Honiton Road) is not at a relevant receptor, but there is also a tube located at the nearest property (DT55 Honiton Road façade). This tube does not show an exceedence. All four locations that exceeded the objective are within the AQMA. The extent of the exceedence of the objectives ranges from 2  $\mu$ g/m³ at Pinhoe Road (Polsloe Road) to 19  $\mu$ g/m³ at East Wonford Hill. No annual average level was over a level of  $60\mu$ g/m³, which would indicate that an exceedance of the 1-hour mean objective is also likely.

The general trend in the diffusion tube data for the last 5 years shown in Table A.4 is downward. There has been a corresponding reduction in the number of sites which exceed the objective. Exeter City Council has no current plans to amend the AQMA and reduce the area included. The AQMA boundary was originally drawn to include a larger area than just the strict areas of exceedence (Exeter City Council 2011). The rationale for this boundary remains sound.

Figue A.4.1 shows that this downward trend seems to have existed since around 2009, and is evident at background sites as well as roadside ones. This is a welcome trend, especially in the context of significant local housing and commercial development. However it has not been possible to link this trend directly to any specific national or local intervention and some element of inter-annual variability caused by weather conidtions will be included.

#### 3.2.2 Particulate Matter (PM<sub>10</sub>)

Table A.5 in Appendix A compares the ratified and adjusted monitored PM<sub>10</sub> annual mean concentrations for the past 5 years with the air quality objective of 40µg/m<sup>3</sup>.

Table A.6 in Appendix A compares the ratified continuous monitored  $PM_{10}$  daily mean concentrations for the past 5 years with the air quality objective of  $50\mu g/m^3$ , not to be exceeded more than 35 times per year.

There were no measured exceedences of the  $PM_{10}$  air quality objectives in Exeter in 2015. Annual average concentrations have reduced slightly since 2014, and the number of exceedences of an hourly mean of  $50\mu g/m^3$  remains low. The long-term trend in annual concentrations is a decline since 2005 or 2006.

## **Appendix A: Monitoring Results**

**Table A.1 – Details of Automatic Monitoring Sites** 

| Site ID | Site Name            | Site Type | X OS<br>Grid<br>Ref | Y OS<br>Grid<br>Ref | Pollutants<br>Monitored                              | In<br>AQMA?                 | Monitoring<br>Technique        | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance<br>to kerb of<br>nearest<br>road (m) | Inlet<br>Height<br>(m) |
|---------|----------------------|-----------|---------------------|---------------------|------------------------------------------------------|-----------------------------|--------------------------------|-----------------------------------------------------------|-----------------------------------------------|------------------------|
| CM1     | Exeter<br>Roadside   | Kerbside  | 291939              | 092830              | NO <sub>2</sub> , O <sub>3</sub><br>PM <sub>10</sub> | Y (for<br>NO <sub>2</sub> ) | Chemiluminescent, UVA and TEOM | 0                                                         | 1                                             | 1.7                    |
| CM2     | Alphington<br>Street | Roadside  | 291670              | 091773              | PM <sub>10</sub>                                     | N                           | TEOM                           | 12                                                        | 3                                             | 1.7                    |

<sup>(1)</sup> Om if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).

<sup>(2)</sup> N/A if not applicable.

**Table A.2 – Details of Non-Automatic Monitoring Sites** 

| Site<br>ID | Site Name                    | Site Type | X OS<br>Grid<br>Ref | Y OS<br>Grid<br>Ref | Pollutants<br>Monitored | In<br>AQMA? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) (2) | Tube collocated with a Continuous Analyser? | Height (m) |
|------------|------------------------------|-----------|---------------------|---------------------|-------------------------|-------------|-----------------------------------------------------------|---------------------------------------------------|---------------------------------------------|------------|
| DT1        | High Street<br>Castle Street | Kerbside  | 292199              | 92814               | NO <sub>2</sub>         | Yes         | 50                                                        | 0.5                                               | N                                           | 2          |
| DT2        | Longbrook<br>Street          | Kerbside  | 292315              | 93016               | NO <sub>2</sub>         | No          | 0                                                         | 1                                                 | N                                           | 1.7        |
| DT3        | New North<br>Road            | Kerbside  | 292185              | 93049               | NO <sub>2</sub>         | Yes         | 0                                                         | 1                                                 | N                                           | 2          |
| DT4        | Queen Street                 | Kerbside  | 291779              | 93011               | NO <sub>2</sub>         | Yes         | 0                                                         | 1.5                                               | N                                           | 2          |
| DT5        | RAMM 1                       | Kerbside  | 291944              | 92826               | NO <sub>2</sub>         | Yes         | 0                                                         | 1                                                 | Y                                           | 1.7        |
| DT6        | RAMM 2                       | Kerbside  | 291944              | 92826               | NO <sub>2</sub>         | Yes         | 0                                                         | 1                                                 | Y                                           | 1.7        |
| DT7        | High Street<br>Guildhall     | Roadside  | 291984              | 92626               | NO <sub>2</sub>         | Yes         | 0                                                         | 2                                                 | N                                           | 2          |
| DT8        | North Street                 | Kerbside  | 291895              | 92569               | NO <sub>2</sub>         | Yes         | 0                                                         | 1                                                 | N                                           | 1.7        |
| DT9        | South Street                 | Roadside  | 291943              | 92511               | NO <sub>2</sub>         | Yes         | 3                                                         | 1.5                                               | N                                           | 2          |
| DT10       | Market Street                | Kerbside  | 291833              | 92433               | NO <sub>2</sub>         | Yes         | 0                                                         | 1                                                 | N                                           | 1.7        |
| DT11       | Magdalen<br>Street           | Kerbside  | 292291              | 92292               | NO <sub>2</sub>         | Yes         | 8                                                         | 1                                                 | N                                           | 1.7        |
| DT12       | Magdalen<br>Street<br>Façade | Kerbside  | 292422              | 92320               | NO <sub>2</sub>         | Yes         | 0                                                         | 1                                                 | No                                          | 1.7        |
| DT13       | Archibald<br>Road            | Roadside  | 292590              | 92743               | NO <sub>2</sub>         | No          | 0                                                         | 1.5                                               | No                                          | 1.7        |
| DT14       | Heavitree<br>Road<br>Inbound | Roadside  | 292832              | 92731               | NO <sub>2</sub>         | Yes         | 0                                                         | 10                                                | No                                          | 2          |

| Site<br>ID | Site Name                      | Site Type           | X OS<br>Grid<br>Ref | Y OS<br>Grid<br>Ref | Pollutants<br>Monitored | In<br>AQMA? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) (2) | Tube collocated with a Continuous Analyser? | Height (m) |
|------------|--------------------------------|---------------------|---------------------|---------------------|-------------------------|-------------|-----------------------------------------------------------|---------------------------------------------------|---------------------------------------------|------------|
| DT15       | Heavitree<br>Road<br>Outbound  | Kerbside            | 292703              | 92807               | NO <sub>2</sub>         | Yes         | 0                                                         | 1                                                 | No                                          | 1.7        |
| DT16       | Holloway<br>Street             | Kerbside            | 292378              | 92039               | NO <sub>2</sub>         | Yes         | 0                                                         | 1                                                 | No                                          | 1.7        |
| DT17       | Carders<br>Court,<br>Shilhay   | Roadside            | 291699              | 92091               | NO <sub>2</sub>         | No          | 0                                                         | 15                                                | No                                          | 1.7        |
| DT18       | Rear of<br>Gervase<br>Avenue   | Roadside            | 291657              | 91973               | NO <sub>2</sub>         | Yes         | 5                                                         | 5                                                 | No                                          | 2          |
| DT19       | Alphington<br>Street           | Kerbside            | 291669              | 91812               | NO <sub>2</sub>         | Yes         | 0                                                         | 1                                                 | No                                          | 2          |
| DT20       | Alphington<br>Road<br>Inbound  | Roadside            | 291532              | 91349               | NO <sub>2</sub>         | Yes         | 0                                                         | 2                                                 | No                                          | 1.7        |
| DT21       | Queens Road                    | Urban<br>B'ckground | 291460              | 91390               | NO <sub>2</sub>         | No          | 8                                                         | 2                                                 | No                                          | 1.7        |
| DT22       | Alphington<br>Road<br>Outbound | Roadside            | 291509              | 91151               | NO <sub>2</sub>         | Yes         | 0                                                         | 8                                                 | No                                          | 1.7        |
| DT23       | Alphington<br>Road outer       | Roadside            | 291518              | 90813               | NO <sub>2</sub>         | Yes         | 15                                                        | 2                                                 | No                                          | 1.7        |
| DT24       | Church Road<br>Alphington      | Roadside            | 291691              | 90425               | NO <sub>2</sub>         | Yes         | 0                                                         | 1.5                                               | No                                          | 1.7        |
| DT25       | Church Road                    | Kerbside            | 291767              | 90160               | NO <sub>2</sub>         | Yes         | 0                                                         | 1                                                 | No                                          | 1.7        |

| Site<br>ID | Site Name                            | Site Type | X OS<br>Grid<br>Ref | Y OS<br>Grid<br>Ref | Pollutants<br>Monitored | In<br>AQMA? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) (2) | Tube collocated with a Continuous Analyser? | Height (m) |
|------------|--------------------------------------|-----------|---------------------|---------------------|-------------------------|-------------|-----------------------------------------------------------|---------------------------------------------------|---------------------------------------------|------------|
|            | II                                   |           |                     |                     |                         |             |                                                           |                                                   |                                             |            |
| DT26       | Cowick Street<br>(Cowick<br>Lane)    | Kerbside  | 290864              | 91725               | NO <sub>2</sub>         | Yes         | 0                                                         | 1                                                 | No                                          | 1.7        |
| DT27       | Cowick Street Inbound                | Roadside  | 291249              | 91874               | NO <sub>2</sub>         | Yes         | 0                                                         | 4                                                 | No                                          | 1.7        |
| DT28       | Cowick Street<br>Outbound            | Roadside  | 291376              | 91944               | NO <sub>2</sub>         | Yes         | 0                                                         | 1.5                                               | No                                          | 1.7        |
| DT29       | Cowick Street (Exe Bridges)          | Roadside  | 291500              | 92055               | NO <sub>2</sub>         | Yes         | 0                                                         | 2                                                 | No                                          | 1.7        |
| DT30       | Okehampton<br>Street                 | Roadside  | 291351              | 92169               | NO <sub>2</sub>         | Yes         | 0                                                         | 4                                                 | No                                          | 1.7        |
| DT31       | Bonhay Road<br>(St Clements<br>Lane) | Roadside  | 291253              | 93299               | NO <sub>2</sub>         | Yes         | 0                                                         | 2                                                 | No                                          | 2          |
| DT32       | Red Cow<br>Village                   | Kerbside  | 291242              | 93483               | NO <sub>2</sub>         | Yes         | 0                                                         | 1                                                 | No                                          | 1.7        |
| DT33       | Red Cow II                           | Kerbside  | 291272              | 93468               | NO <sub>2</sub>         | Yes         | 0                                                         | 1                                                 | No                                          | 1.7        |
| DT34       | Cowley<br>Bridge Road                | Roadside  | 291054              | 94399               | NO <sub>2</sub>         | Yes         | 0                                                         | 4                                                 | No                                          | 1.7        |
| DT35       | Pennsylvania<br>Road                 | Roadside  | 292391              | 93291               | NO <sub>2</sub>         | No          | 0                                                         | 1                                                 | No                                          | 1.7        |
| DT36       | York Road<br>School                  | Roadside  | 292469              | 93245               | NO <sub>2</sub>         | No          | 3.5                                                       | 2.5                                               | No                                          | 1.7        |
| DT37       | York Road                            | Kerbside  | 292579              | 93146               | NO <sub>2</sub>         | No          | 1.5                                                       | 0                                                 | No                                          | 1.7        |
| DT38       | Union Road                           | Roadside  | 293047              | 93877               | NO <sub>2</sub>         | No          | 10                                                        | 1                                                 | No                                          | 1.7        |

| Site<br>ID | Site Name                             | Site Type           | X OS<br>Grid<br>Ref | Y OS<br>Grid<br>Ref | Pollutants<br>Monitored | In<br>AQMA? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube collocated with a Continuous Analyser? | Height (m) |
|------------|---------------------------------------|---------------------|---------------------|---------------------|-------------------------|-------------|-----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|------------|
| DT39       | Pinhoe Road<br>Inbound                | Roadside            | 293405              | 93395               | NO <sub>2</sub>         | Yes         | 0                                                         | 3                                                            | No                                          | 1.7        |
| DT40       | Pinhoe Road<br>(Polsloe<br>Road)      | Kerbside            | 293251              | 93375               | NO <sub>2</sub>         | Yes         | Yes (0m)                                                  | 1                                                            | No                                          | 1.7        |
| DT41       | Blackboy<br>Road<br>(Polsloe<br>Road) | Roadside            | 293227              | 93356               | NO <sub>2</sub>         | Yes         | Yes (0m)                                                  | 2                                                            | No                                          | 1.7        |
| DT42       | Beacon<br>Heath                       | Kerbside            | 295068              | 94487               | NO <sub>2</sub>         | No          | No (10m)                                                  | 0                                                            | No                                          | 1.7        |
| DT43       | Pinhoe                                | Kerbside            | 296418              | 94470               | NO <sub>2</sub>         | No          | No (1m)                                                   | 0                                                            | No                                          | 1.7        |
| DT44       | Langaton<br>Lane                      | Urban<br>Background | 296984              | 94327               | NO <sub>2</sub>         | No          | No (20m)                                                  | 0                                                            | No                                          | 1.7        |
| DT45       | Pinhoe Road<br>(Fairfield<br>Avenue)  | Roadside            | 295413              | 93689               | NO <sub>2</sub>         | Yes         | Yes (0m)                                                  | 5                                                            | No                                          | 1.7        |
| DT46       | East John<br>Walk                     | Urban<br>Background | 293091              | 92825               | NO <sub>2</sub>         | No          | No (1.5m)                                                 | N/A                                                          | No                                          | 1.7        |
| DT47       | Magdalen<br>Road<br>(Barrack<br>Road) | Kerbside            | 293448              | 92419               | NO <sub>2</sub>         | Yes         | Yes (0m)                                                  | 1                                                            | No                                          | 1.7        |
| DT48       | Livery Dole                           | Roadside            | 293418              | 92497               | NO <sub>2</sub>         | Yes         | Yes (0m)                                                  | 1.5                                                          | No                                          | 1.7        |
| DT49       | Rowancroft                            | Kerbside            | 293533              | 92473               | NO <sub>2</sub>         | Yes         | Yes (0m)                                                  | 0.2                                                          | No                                          | 2          |
| DT50       | Salutary                              | Roadside            | 293738              | 92396               | NO <sub>2</sub>         | Yes         | Yes (0m)                                                  | 4                                                            | No                                          | 1.7        |

| Site<br>ID | Site Name                             | Site Type | X OS<br>Grid<br>Ref | Y OS<br>Grid<br>Ref | Pollutants<br>Monitored | In<br>AQMA? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube collocated with a Continuous Analyser? | Height (m) |
|------------|---------------------------------------|-----------|---------------------|---------------------|-------------------------|-------------|-----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|------------|
|            | Mount                                 |           |                     |                     |                         |             |                                                           |                                                              |                                             |            |
| DT51       | Fore St.<br>Heavitree<br>Outbound     | Roadside  | 293781              | 92409               | NO <sub>2</sub>         | Yes         | No (8m)                                                   | 4                                                            | No                                          | 1.7        |
| DT52       | Fore Street<br>Heavitree<br>Inbound   | Roadside  | 294043              | 92359               | NO <sub>2</sub>         | Yes         | Yes (0m)                                                  | 2                                                            | No                                          | 1.7        |
| DT53       | East Wonford<br>Hill                  | Roadside  | 294410              | 92310               | NO <sub>2</sub>         | Yes         | Yes (0m)                                                  | 2                                                            | No                                          | 1.7        |
| DT54       | Honiton Road                          | Roadside  | 295203              | 92378               | NO <sub>2</sub>         | Yes         | No (13m)                                                  | 1.5                                                          | No                                          | 1.7        |
| DT55       | Honiton Road façade                   | Roadside  | 295191              | 92395               | NO <sub>2</sub>         | No          | Yes (0m)                                                  | 15                                                           | No                                          | 1.7        |
| DT56       | Sidmouth<br>Road lamp<br>post         | Roadside  | 295466              | 92365               | NO <sub>2</sub>         | Yes         | No (6m)                                                   | 1.5                                                          | No                                          | 2          |
| DT57       | Sidmouth<br>Road<br>(Middlemoor)      | Roadside  | 295636              | 92232               | NO <sub>2</sub>         | Yes         | Yes (0m)                                                  | 10                                                           | No                                          | 1.7        |
| DT58       | Topsham<br>Road<br>(Countess<br>Wear) | Roadside  | 294694              | 90001               | NO <sub>2</sub>         | Yes         | Yes (0m)                                                  | 5                                                            | No                                          | 2          |
| DT59       | Bridge Road<br>(Countess<br>Wear)     | Roadside  | 294652              | 89974               | NO <sub>2</sub>         | No          | Yes (0m)                                                  | 15                                                           | No                                          | 1.7        |
| DT60       | High Street                           | Kerbside  | 296415              | 88477               | NO <sub>2</sub>         | No          | Yes (0m)                                                  | 1                                                            | No                                          | 1.7        |

| Site<br>ID | Site Name                             | Site Type | X OS<br>Grid<br>Ref | Y OS<br>Grid<br>Ref | Pollutants<br>Monitored | In<br>AQMA? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube collocated with a Continuous Analyser? | Height (m) |
|------------|---------------------------------------|-----------|---------------------|---------------------|-------------------------|-------------|-----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|------------|
|            | Topsham                               |           |                     |                     |                         |             |                                                           |                                                              |                                             |            |
| DT61       | Topsham<br>Road<br>(Tollards<br>Road) | Roadside  | 294227              | 90435               | NO <sub>2</sub>         | Yes         | Yes (0m)                                                  | 1.5                                                          | No                                          | 1.7        |
| DT62       | Topsham<br>Road<br>(Barrack<br>Road)  | Roadside  | 293213              | 91245               | NO <sub>2</sub>         | Yes         | Yes (0m)                                                  | 10                                                           | No                                          | 1.7        |

<sup>(1)</sup> Om if the monitoring site is at a location of exposure (e.g. installed on/adjacent to the façade of a residential property).

<sup>(2)</sup> N/A if not applicable.

Table A.3 – Annual Mean NO<sub>2</sub> Monitoring Results

|         |            |                        | Valid Data<br>Capture for               | Valid Data           | NO <sub>2</sub> Aı | nnual Mear  | Concentra   | ation (µg/m | 1 <sup>3</sup> ) <sup>(3)</sup> |
|---------|------------|------------------------|-----------------------------------------|----------------------|--------------------|-------------|-------------|-------------|---------------------------------|
| Site ID | Site Type  | Monitoring Type        | Monitoring<br>Period (%) <sup>(1)</sup> | Capture 2015 (%) (2) | 2011               | 2012        | 2013        | 2014        | 2015                            |
| CM1     | Kerbside   | Continuous<br>Analyser |                                         | 99%                  | 32                 | 33          | 32          | 31          | 28                              |
| DT1     | Kerbside   | Diffusion Tube         |                                         | 100.0%               | 33.7               | 31.5        | 28.7        | 29.9        | 25.0                            |
| DT2     | Kerbside   | Diffusion Tube         |                                         | 100.0%               |                    |             |             |             | 24.8                            |
| DT3     | Kerbside   | Diffusion Tube         |                                         | 91.7%                | 33.8               | 32.8        | 30.0        | 28.1        | 26.5                            |
| DT4     | Kerbside   | Diffusion Tube         |                                         | 83.3%                | 27.2               | 29.5        | 27.2        | 26.0        | 21.6                            |
| DT5     | Kerbside   | Diffusion Tube         |                                         | 83.3%                | 33.0               | 33.5        | 32.5        | 30.6        | 29.6                            |
| DT6     | Kerbside   | Diffusion Tube         |                                         | 83.3%                | 32.2               | 32.5        | 32.7        | 31.1        | 28.9                            |
| DT7     | Roadside   | Diffusion Tube         |                                         | 100.0%               | 28.4               | 28.9        | 27.3        | 29.2        | 25.0                            |
| DT8     | Kerbside   | Diffusion Tube         |                                         | 100.0%               | 40.2               | <u>45.1</u> | 40.0        | 39.8        | 34.8                            |
| DT9     | Roadside   | Diffusion Tube         |                                         | 100.0%               | 35.5               | 38.1        | 34.8        | 33.6        | 30.6                            |
| DT10    | Kerbside   | Diffusion Tube         |                                         | 100.0%               | 34.1               | 35.7        | 32.4        | 34.1        | 28.3                            |
| DT11    | Kerbside   | Diffusion Tube         |                                         | 100.0%               | 31.7               | 33.2        | 31.7        | 31.5        | 27.6                            |
| DT12    | Kerbside   | Diffusion Tube         |                                         | 100.0%               | 30.3               | 33.3        | 33.9        | 31.9        | 28.0                            |
| DT13    | Roadside   | Diffusion Tube         |                                         | 100.0%               | 22.5               | 25.1        | 24.8        | 22.1        | 20.5                            |
| DT14    | Roadside   | Diffusion Tube         |                                         | 100.0%               | 20.5               | 23.7        | 23.2        | 21.7        | 19.6                            |
| DT15    | Kerbside   | Diffusion Tube         |                                         | 100.0%               | 37.6               | 37.4        | 39.6        | 38.8        | 33.5                            |
| DT16    | Kerbside   | Diffusion Tube         |                                         | 100.0%               | 33.4               | 36.4        | 39.2        | 35.9        | 28.8                            |
| DT17    | Roadside   | Diffusion Tube         |                                         | 100.0%               | 22.8               | 25.9        | 24.1        | 23.5        | 20.5                            |
| DT18    | Roadside   | Diffusion Tube         |                                         | 91.7%                | 28.0               | 29.4        | 24.7        | 26.6        | 23.7                            |
| DT19    | Kerbside   | Diffusion Tube         |                                         | 100.0%               | <u>41.1</u>        | 42.4        | <u>45.8</u> | 44.4        | 35.2                            |
| DT20    | Roadside   | Diffusion Tube         |                                         | 91.7%                | 36.2               | 35.9        | 35.7        | 36.3        | 32.5                            |
| DT21    | Urban      | Diffusion Tube         |                                         |                      |                    |             |             |             |                                 |
|         | B'ckground |                        |                                         | 100.0%               | 15.5               | 15.4        | 15.3        | 15.2        | 12.8                            |
| DT22    | Roadside   | Diffusion Tube         |                                         | 100.0%               | 33.4               | 29.5        | 29.6        | 30.7        | 25.3                            |

|         |                     |                 | Valid Data<br>Capture for               | Valid Data           | NO <sub>2</sub> Ar | nnual Mean  | Concentra   | ation (µg/n | n³) <sup>(3)</sup> |
|---------|---------------------|-----------------|-----------------------------------------|----------------------|--------------------|-------------|-------------|-------------|--------------------|
| Site ID | Site Type           | Monitoring Type | Monitoring<br>Period (%) <sup>(1)</sup> | Capture 2015 (%) (2) | 2011               | 2012        | 2013        | 2014        | 2015               |
| DT23    | Roadside            | Diffusion Tube  |                                         | 100.0%               | 26.0               | 28.1        | 31.2        | 28.6        | 22.3               |
| DT24    | Roadside            | Diffusion Tube  |                                         | 100.0%               | 28.1               | 28.2        | 26.0        | 26.4        | 24.1               |
| DT25    | Kerbside            | Diffusion Tube  |                                         | 100.0%               | 24.7               | 30.3        | 29.6        | 29.1        | 26.9               |
| DT26    | Kerbside            | Diffusion Tube  |                                         | 100.0%               | <u>57.7</u>        | <u>50.4</u> | <u>47.7</u> | <u>45.4</u> | 36.4               |
| DT27    | Roadside            | Diffusion Tube  |                                         | 100.0%               | 25.6               | 24.5        | 24.7        | 24.6        | 20.5               |
| DT28    | Roadside            | Diffusion Tube  |                                         | 100.0%               | <u>41.9</u>        | <u>41.9</u> | 38.6        | <u>40.8</u> | 34.0               |
| DT29    | Roadside            | Diffusion Tube  |                                         | 91.7%                | 36.9               | 37.8        | 35.6        | 35.7        | 32.4               |
| DT30    | Roadside            | Diffusion Tube  |                                         | 100.0%               | 27.0               | 28.5        | 27.8        | 26.5        | 23.7               |
| DT31    | Roadside            | Diffusion Tube  |                                         | 100.0%               | 30.1               | 33.1        | 32.6        | 31.5        | 27.2               |
| DT32    | Kerbside            | Diffusion Tube  |                                         | 100.0%               | 38.1               | <u>43.7</u> | 40.8        | 42.7        | 36.1               |
| DT33    | Kerbside            | Diffusion Tube  |                                         | 100.0%               | <u>40.2</u>        | 37.1        | 34.0        | 36.8        | 32.0               |
| DT34    | Roadside            | Diffusion Tube  |                                         | 83.3%                | 33.5               | 37.5        | 36.4        | 38.3        | 33.2               |
| DT35    | Roadside            | Diffusion Tube  |                                         | 100.0%               | 26.5               | 30.5        | 31.2        | 31.3        | 25.6               |
| DT36    | Roadside            | Diffusion Tube  |                                         | 91.7%                |                    |             |             |             | 27.9               |
| DT37    | Kerbside            | Diffusion Tube  |                                         | 100.0%               | 25.3               | 37.8        | 37.3        | 38.8        | 32.0               |
| DT38    | Roadside            | Diffusion Tube  |                                         | 100.0%               |                    | 32.5        | 31.2        | 32.1        | 22.3               |
| DT39    | Roadside            | Diffusion Tube  |                                         | 100.0%               | 38.4               | 38.0        | 34.1        | 37.7        | 30.6               |
| DT40    | Kerbside            | Diffusion Tube  |                                         | 100.0%               | <u>49.6</u>        | <u>55.4</u> | <u>48.4</u> | <u>48.3</u> | <u>42.1</u>        |
| DT41    | Roadside            | Diffusion Tube  |                                         | 100.0%               | 34.6               | 34.3        | 32.9        | 33.4        | 29.2               |
| DT42    | Kerbside            | Diffusion Tube  |                                         | 75.0%                | 33.0               | 19.8        | 17.3        | 19.0        | 17.5               |
| DT43    | Kerbside            | Diffusion Tube  |                                         | 100.0%               | 26.6               | 28.8        | 35.9        | 38.4        | 24.9               |
| DT44    | Urban<br>Background | Diffusion Tube  |                                         | 100.0%               | 18.1               | 18.4        | 17.7        | 18.7        | 16.7               |
| DT45    | Roadside            | Diffusion Tube  |                                         | 100.0%               | 20.1               | 21.7        | 20.7        | 20.2        | 18.5               |
| DT46    | Urban<br>Background | Diffusion Tube  |                                         | 100.0%               | 16.3               | 17.1        | 15.0        | 15.7        | 13.9               |

|         |           |                 | Valid Data<br>Capture for | Valid Data                         | NO <sub>2</sub> A | NO <sub>2</sub> Annual Mean Concentration (µg/m³) <sup>(3)</sup> |             |             |             |  |  |  |  |
|---------|-----------|-----------------|---------------------------|------------------------------------|-------------------|------------------------------------------------------------------|-------------|-------------|-------------|--|--|--|--|
| Site ID | Site Type | Monitoring Type | Monitoring Period (%) (1) | Capture 2015<br>(%) <sup>(2)</sup> | 2011              | 2012                                                             | 2013        | 2014        | 2015        |  |  |  |  |
| DT47    | Kerbside  | Diffusion Tube  |                           | 100.0%                             | <u>42.0</u>       | <u>43.8</u>                                                      | <u>43.1</u> | <u>40.4</u> | 37.2        |  |  |  |  |
| DT48    | Roadside  | Diffusion Tube  |                           | 91.7%                              | <u>52.8</u>       | <u>51.8</u>                                                      | <u>49.3</u> | <u>52.0</u> | <u>48.8</u> |  |  |  |  |
| DT49    | Kerbside  | Diffusion Tube  |                           | 100.0%                             | <u>40.7</u>       | <u>46.7</u>                                                      | <u>41.6</u> | <u>42.5</u> | 38.2        |  |  |  |  |
| DT50    | Roadside  | Diffusion Tube  |                           | 100.0%                             | <u>43.8</u>       | 44.7                                                             | 39.3        | 39.5        | 35.5        |  |  |  |  |
| DT51    | Roadside  | Diffusion Tube  |                           | 100.0%                             | 36.7              | 32.9                                                             | 29.2        | 30.3        | 29.5        |  |  |  |  |
| DT52    | Roadside  | Diffusion Tube  |                           | 100.0%                             | <u>48.7</u>       | <u>50.9</u>                                                      | <u>46.2</u> | <u>48.5</u> | 38.6        |  |  |  |  |
| DT53    | Roadside  | Diffusion Tube  |                           | 100.0%                             | <u>62.6</u>       | <u>70.6</u>                                                      | <u>60.8</u> | <u>64.2</u> | <u>59.2</u> |  |  |  |  |
| DT54    | Roadside  | Diffusion Tube  |                           | 91.7%                              | <u>51.9</u>       | <u>56.2</u>                                                      | <u>53.9</u> | <u>58.4</u> | <u>42.7</u> |  |  |  |  |
| DT55    | Roadside  | Diffusion Tube  |                           | 100.0%                             | 20.3              | 21.8                                                             | 20.9        | 21.9        | 18.4        |  |  |  |  |
| DT56    | Roadside  | Diffusion Tube  |                           | 100.0%                             | 36.1              | 36.9                                                             | 34.6        | 35.3        | 31.4        |  |  |  |  |
| DT57    | Roadside  | Diffusion Tube  |                           | 100.0%                             | 22.4              | 24.4                                                             | 23.8        | 24.0        | 21.2        |  |  |  |  |
| DT58    | Roadside  | Diffusion Tube  |                           | 100.0%                             | 27.7              | 27.9                                                             | 27.3        | 29.0        | 26.3        |  |  |  |  |
| DT59    | Roadside  | Diffusion Tube  |                           | 100.0%                             | 22.8              | 22.2                                                             | 22.5        | 21.6        | 19.3        |  |  |  |  |
| DT60    | Kerbside  | Diffusion Tube  |                           | 83.3%                              | 26.9              | 28.5                                                             | 26.6        | 26.1        | 21.6        |  |  |  |  |
| DT61    | Roadside  | Diffusion Tube  |                           | 100.0%                             | 40.2              | 42.6                                                             | 38.1        | 40.2        | 36.6        |  |  |  |  |
| DT62    | Roadside  | Diffusion Tube  |                           | 100.0%                             | 26.9              | 27.5                                                             | 26.9        | 27.6        | 24.1        |  |  |  |  |

Notes: Exceedances of the  $NO_2$  annual mean objective of  $40\mu g/m^3$  are shown in **bold**.

NO<sub>2</sub> annual means exceeding 60μg/m³, indicating a potential exceedance of the NO<sub>2</sub> 1-hour mean objective are shown in **bold and underlined**.

- (1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per Technical Guidance LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Figure A.3.1 – Trends in Annual Mean NO<sub>2</sub> Monitoring Results at 6 Long-Term Sites in Exeter

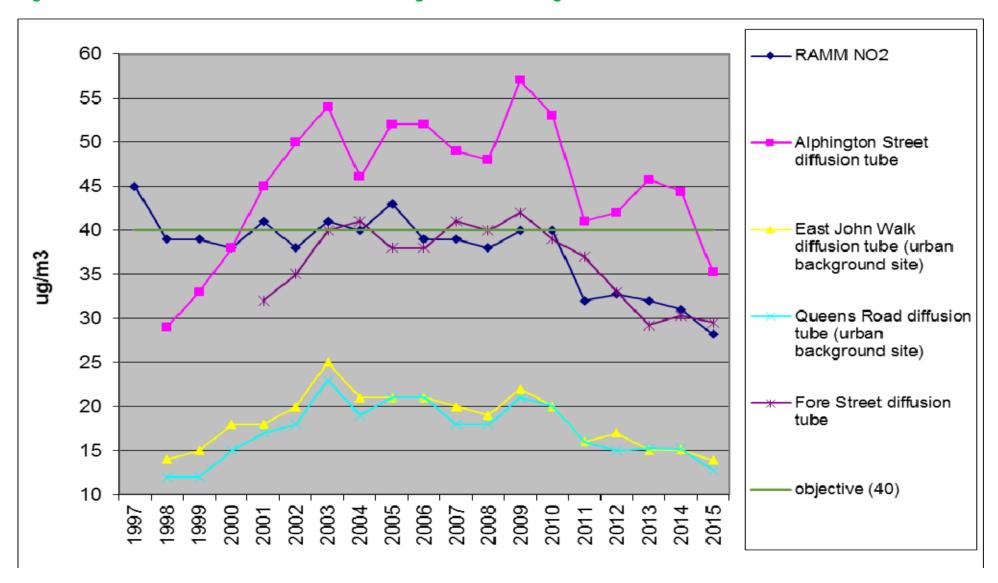



Table A.4 - 1-Hour Mean NO<sub>2</sub> Monitoring Results

|         |           | Monitoring             | Valid Data<br>Capture for | Valid Data |      | NO <sub>2</sub> 1 Hou | r Means > 2 | 200μg/m³ <sup>(3)</sup> |      |
|---------|-----------|------------------------|---------------------------|------------|------|-----------------------|-------------|-------------------------|------|
| Site ID | Site Type | Туре                   | Monitoring Period (%) (1) | (%) (2)    | 2011 | 2012                  | 2013        | 2014                    | 2015 |
| CM1     | Kerbside  | Continuous<br>Analyser |                           | 99%        | 0    | 1                     | 0           | 0(109)                  | 0    |

Notes: Exceedances of the NO<sub>2</sub> 1-hour mean objective (200µg/m³ not to be exceeded more than 18 times/year) are shown in **bold**.

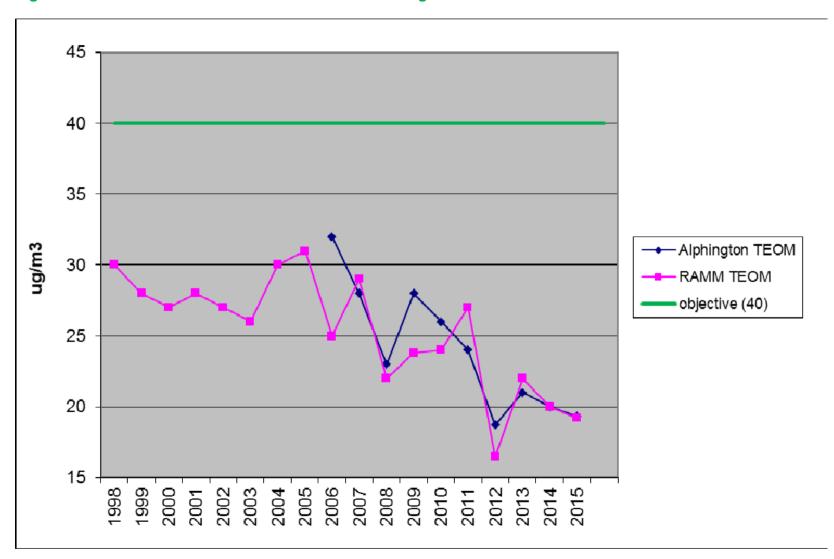
- (1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) If the period of valid data is less than 90%, the 99.8th percentile of 1-hour means is provided in brackets.

Table A.5 - Annual Mean PM<sub>10</sub> Monitoring Results

| Site ID | Site Type | Valid Data Capture for Monitoring | Valid Data<br>Capture 2015 | PM <sub>10</sub> | Annual Me | an Concen | tration (µg/ | /m³) <sup>(3)</sup> |
|---------|-----------|-----------------------------------|----------------------------|------------------|-----------|-----------|--------------|---------------------|
| Site ID | Site Type | Period (%) (1)                    | (%) <sup>(2)</sup>         | 2011             | 2012      | 2013      | 2014         | 2015                |
| CM1     | Kerbside  |                                   | 91%                        | 27               | 16        | 22        | 20           | 19                  |
| CM2     | Roadside  |                                   | 87%                        | 24               | 19        | 21        | 20           | 19                  |

Notes: Exceedances of the PM<sub>10</sub> annual mean objective of 40µg/m<sup>3</sup> are shown in **bold**.

- (1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) All means have been "annualised" as per Technical Guidance LAQM.TG16, valid data capture for the full calendar year is less than 75%. See Appendix C for details.


Table A.6 – 24-Hour Mean PM<sub>10</sub> Monitoring Results

| Site ID | Site Type | Valid Data Capture for Monitoring Period (%) |     |      | PM <sub>10</sub> 24 Ho | ur Means > | · 50μg/m³ <sup>(3)</sup> |          |
|---------|-----------|----------------------------------------------|-----|------|------------------------|------------|--------------------------|----------|
| Ofte ID | One Type  | (1)                                          | (2) | 2011 | 2012                   | 2013       | 2014                     | 2015     |
| CM1     | Kerbside  |                                              | 91% | 21   | 3                      | 8          | 2                        | 6        |
| CM2     | Roadside  |                                              | 87% | 15   | 3                      | 3          | 2                        | 6 (29.5) |

Notes: Exceedances of the PM<sub>10</sub> 24-hour mean objective (50µg/m³ not to be exceeded more than 35 times/year) are shown in**bold**.

- (1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) If the period of valid data is less than 90%, the 90.4th percentile of 24-hour means is provided in brackets.

Figure A.5.1 – Trends in Annual Mean PM<sub>10</sub> Monitoring Results



## **Appendix B: Full Monthly Diffusion Tube Results for 2015**

Table B.1 – NO<sub>2</sub> Monthly Diffusion Tube Results - 2015

|         |       |       |       |       |       | NO <sub>2</sub> M | ean Co | ncentra | tions (μ | ıg/m³) |       |       |             |                  |
|---------|-------|-------|-------|-------|-------|-------------------|--------|---------|----------|--------|-------|-------|-------------|------------------|
| au 15   |       |       |       |       |       |                   |        |         |          |        |       |       | Annu        | al Mean          |
| Site ID | Jan   | Feb   | Mar   | Apr   | May   | Jun               | Jul    | Aug     | Sep      | Oct    | Nov   | Dec   | Raw<br>Data | Bias<br>Adjusted |
| DT1     | 33.84 | 33.89 | 33.89 | 35.18 | 29.36 | 21.23             | 27.60  | 26.50   | 26.53    | 32.32  | 25.07 | 31.16 | 29.7        | 25.0             |
| DT2     | 35.13 | 30.11 | 30.11 | 31.34 | 23.56 | 30.21             | 23.41  | 28.28   | 27.59    | 32.61  | 29.58 | 32.33 | 29.5        | 24.8             |
| DT3     | 31.92 | 32.26 | 32.26 | 31.73 | 28.97 | 28.96             | 30.80  | 31.60   | 27.49    | 34.64  |       | 36.50 | 31.6        | 26.5             |
| DT4     | 30.12 |       |       | 29.42 | 23.02 | 27.60             | 18.29  | 26.13   | 22.86    | 32.65  | 24.40 | 22.94 | 25.7        | 21.6             |
| DT5     | 37.83 | 40.06 | 40.06 | 37.75 | 26.09 |                   | 28.30  |         | 37.02    | 44.60  | 28.77 | 31.49 | 35.2        | 29.6             |
| DT6     | 35.62 | 37.70 | 37.70 | 39.64 | 28.03 |                   | 28.80  |         | 33.12    | 44.26  | 29.21 | 30.01 | 34.4        | 28.9             |
| DT7     | 30.02 | 32.83 | 32.83 | 34.84 | 26.42 | 24.37             | 27.33  | 28.01   | 25.38    | 34.68  | 24.85 | 35.04 | 29.7        | 25.0             |
| DT8     | 49.72 | 40.76 | 40.76 | 43.97 | 38.92 | 32.89             | 41.06  | 45.45   | 37.03    | 40.10  | 40.36 | 46.12 | 41.4        | 34.8             |
| DT9     | 42.19 | 38.95 | 38.95 | 39.70 | 34.14 | 26.25             | 37.36  | 34.91   | 34.87    | 39.30  | 30.71 | 39.65 | 36.4        | 30.6             |
| DT10    | 38.24 | 35.03 | 35.03 | 38.70 | 26.78 | 24.53             | 29.74  | 34.45   | 31.23    | 36.38  | 35.74 | 38.71 | 33.7        | 28.3             |
| DT11    | 39.35 | 35.05 | 35.05 | 36.24 | 27.35 | 23.71             | 30.10  | 32.02   | 32.00    | 39.42  | 32.14 | 31.49 | 32.8        | 27.6             |
| DT12    | 44.42 | 42.37 | 42.37 | 37.46 | 28.43 | 23.53             | 26.01  | 33.01   | 30.74    | 38.27  | 25.75 | 27.49 | 33.3        | 28.0             |
| DT13    | 30.01 | 30.07 | 30.07 | 31.99 | 18.45 | 12.55             | 18.95  | 22.81   | 23.49    | 33.79  | 18.43 | 22.43 | 24.4        | 20.5             |
| DT14    | 27.36 | 29.00 | 29.00 | 26.68 | 18.33 | 15.85             | 17.87  | 21.75   | 22.27    | 31.55  | 21.48 | 18.14 | 23.3        | 19.6             |

|         |       |       |       |       |       | NO <sub>2</sub> M | ean Co | ncentra | tions (μ | ıg/m³) |       |       |             |                  |
|---------|-------|-------|-------|-------|-------|-------------------|--------|---------|----------|--------|-------|-------|-------------|------------------|
| 01/ ID  |       |       |       |       |       |                   |        |         |          |        |       |       | Annu        | al Mean          |
| Site ID | Jan   | Feb   | Mar   | Apr   | May   | Jun               | Jul    | Aug     | Sep      | Oct    | Nov   | Dec   | Raw<br>Data | Bias<br>Adjusted |
| DT15    | 46.01 | 43.12 | 43.12 | 43.19 | 35.04 | 29.11             | 37.92  | 42.04   | 43.07    | 49.28  | 32.34 | 34.60 | 39.9        | 33.5             |
| DT16    | 42.82 | 40.10 | 40.10 | 38.89 | 28.10 | 23.82             | 29.91  | 35.62   | 33.11    | 42.30  | 26.49 | 29.95 | 34.3        | 28.8             |
| DT17    | 27.43 | 29.99 | 29.99 | 29.86 | 21.97 | 17.04             | 14.47  | 22.47   | 22.95    | 30.68  | 23.57 | 22.36 | 24.4        | 20.5             |
| DT18    | 34.56 | 29.66 | 29.66 | 31.30 | 20.08 | 18.78             |        | 26.84   | 26.85    | 30.06  | 33.41 | 29.18 | 28.2        | 23.7             |
| DT19    | 44.32 | 45.34 | 45.34 | 44.29 | 35.62 | 31.23             | 40.40  | 44.64   | 43.29    | 55.17  | 35.31 | 38.18 | 41.9        | 35.2             |
| DT20    | 44.87 | 45.86 | 45.86 | 32.74 | 33.79 | 28.63             |        | 41.73   | 38.13    | 42.41  | 37.46 | 33.88 | 38.7        | 32.5             |
| DT21    | 17.70 | 19.89 | 19.89 | 19.54 | 9.26  | 9.29              | 9.94   | 13.59   | 13.71    | 24.87  | 11.76 | 13.49 | 15.2        | 12.8             |
| DT22    | 28.61 | 34.17 | 34.17 | 35.31 | 25.15 | 23.87             | 26.24  | 31.98   | 29.23    | 40.06  | 26.29 | 26.70 | 30.1        | 25.3             |
| DT23    | 25.99 | 32.77 | 32.77 | 27.92 | 19.91 | 19.50             | 23.45  | 22.62   | 24.70    | 33.63  | 22.60 | 33.35 | 26.6        | 22.3             |
| DT24    | 30.23 | 35.00 | 35.00 | 32.06 | 24.67 | 19.94             | 23.28  | 30.22   | 27.94    | 36.67  | 24.73 | 25.12 | 28.7        | 24.1             |
| DT25    | 41.86 | 39.09 | 39.09 | 32.55 | 29.32 | 22.74             | 27.78  | 30.63   | 29.62    | 30.32  | 31.08 | 30.83 | 32.1        | 26.9             |
| DT26    | 49.96 | 36.38 | 36.38 | 47.73 | 44.19 | 37.65             | 46.56  | 44.39   | 36.81    | 43.48  | 39.16 | 57.93 | 43.4        | 36.4             |
| DT27    | 28.58 | 28.99 | 28.99 | 29.05 | 19.32 | 18.68             | 20.25  | 21.01   | 23.16    | 31.91  | 21.66 | 21.21 | 24.4        | 20.5             |
| DT28    | 41.22 | 44.06 | 44.06 | 43.98 | 38.87 | 32.33             | 39.99  | 41.64   | 39.96    | 38.38  | 37.53 | 43.05 | 40.4        | 34.0             |
| DT29    | 48.01 | 47.15 | 47.15 | 43.56 | 34.23 |                   | 35.21  | 32.18   | 34.50    | 40.05  | 31.35 | 30.72 | 38.6        | 32.4             |
| DT30    | 28.57 | 31.09 | 31.09 | 31.81 | 23.67 | 22.25             | 24.93  | 26.00   | 26.11    | 38.16  | 26.08 | 29.49 | 28.3        | 23.7             |
| DT31    | 37.95 | 40.70 | 40.70 | 38.04 | 30.92 | 24.93             | 28.02  | 30.47   | 27.56    | 40.42  | 27.46 | 21.56 | 32.4        | 27.2             |

|         |       |       |       |       |       | NO <sub>2</sub> M | ean Co | ncentra | tions (μ | ıg/m³) |       |       |             |                  |
|---------|-------|-------|-------|-------|-------|-------------------|--------|---------|----------|--------|-------|-------|-------------|------------------|
| OV. 15  |       |       |       |       |       |                   |        |         |          |        |       |       | Annu        | al Mean          |
| Site ID | Jan   | Feb   | Mar   | Apr   | May   | Jun               | Jul    | Aug     | Sep      | Oct    | Nov   | Dec   | Raw<br>Data | Bias<br>Adjusted |
| DT32    | 42.75 | 42.08 | 42.08 | 45.50 | 42.48 | 34.99             | 43.20  | 45.43   | 43.09    | 46.95  | 43.61 | 43.57 | 43.0        | 36.1             |
| DT33    | 46.99 | 45.36 | 45.36 | 40.14 | 34.11 | 30.59             | 32.87  | 34.06   | 32.22    | 41.42  | 38.33 | 35.81 | 38.1        | 32.0             |
| DT34    |       | 45.39 | 45.39 | 40.10 | 36.34 | 31.55             |        | 38.52   | 36.36    | 40.62  | 34.03 | 46.83 | 39.5        | 33.2             |
| DT35    | 31.48 | 31.62 | 31.62 | 39.33 | 24.14 | 21.94             | 26.16  | 29.65   | 30.26    | 37.24  | 30.06 | 31.87 | 30.4        | 25.6             |
| DT36    | 38.62 | 39.89 | 39.89 | 34.91 | 29.88 | 24.41             | 27.00  | 31.89   |          | 40.42  | 27.41 | 31.37 | 33.2        | 27.9             |
| DT37    | 43.47 | 45.89 | 45.89 | 49.28 | 28.84 | 25.82             | 32.01  | 30.63   | 38.71    | 51.27  | 31.62 | 34.07 | 38.1        | 32.0             |
| DT38    | 24.46 | 30.51 | 30.51 | 27.77 | 22.09 | 18.82             | 21.14  | 27.22   | 25.72    | 32.83  | 28.70 | 28.88 | 26.6        | 22.3             |
| DT39    | 42.95 | 40.00 | 40.00 | 38.95 | 31.09 | 21.96             | 34.37  | 35.31   | 34.01    | 32.22  | 43.02 | 43.49 | 36.4        | 30.6             |
| DT40    | 51.23 | 58.99 | 58.99 | 50.29 | 43.05 | 37.42             | 46.07  | 52.48   | 46.47    | 49.68  | 47.08 | 60.13 | 50.2        | 42.1             |
| DT41    | 45.74 | 39.99 | 39.99 | 38.00 | 32.83 | 23.43             | 28.93  | 39.53   | 31.74    | 36.76  | 29.87 | 30.73 | 34.8        | 29.2             |
| DT42    | 24.16 |       |       | 19.29 | 17.94 |                   | 15.06  | 29.40   | 17.32    | 22.34  | 19.85 | 22.23 | 20.8        | 17.5             |
| DT43    | 40.25 | 36.34 | 36.34 | 36.07 | 25.89 | 19.20             | 17.50  | 36.18   | 24.21    | 30.80  | 23.35 | 28.89 | 29.6        | 24.9             |
| DT44    | 20.84 | 22.63 | 22.63 | 23.43 | 11.83 | 12.74             | 16.05  | 26.20   | 16.36    | 25.66  | 18.52 | 22.28 | 19.9        | 16.7             |
| DT45    | 27.15 | 23.68 | 23.68 | 26.37 | 17.65 | 14.75             | 16.12  | 28.57   | 19.88    | 29.23  | 19.13 | 17.76 | 22.0        | 18.5             |
| DT46    | 19.81 | 19.14 | 19.14 | 19.43 | 9.54  | 9.45              | 11.98  | 24.26   | 12.59    | 19.89  | 17.56 | 16.29 | 16.6        | 13.9             |
| DT47    | 57.02 | 55.76 | 55.76 | 60.08 | 33.83 | 29.81             | 32.06  | 44.23   | 38.47    | 55.68  | 37.59 | 30.41 | 44.2        | 37.2             |
| DT48    |       | 73.42 | 73.42 | 59.76 | 54.15 | 43.78             | 47.06  | 59.20   | 56.58    | 53.15  | 55.17 | 63.64 | 58.1        | 48.8             |

|         |       |       |       |       |       | NO <sub>2</sub> M | ean Co | ncentra | tions (μ | ıg/m³) |       |       |             |                  |
|---------|-------|-------|-------|-------|-------|-------------------|--------|---------|----------|--------|-------|-------|-------------|------------------|
| A       |       |       |       |       |       |                   |        |         |          |        |       |       | Annu        | al Mean          |
| Site ID | Jan   | Feb   | Mar   | Apr   | May   | Jun               | Jul    | Aug     | Sep      | Oct    | Nov   | Dec   | Raw<br>Data | Bias<br>Adjusted |
| DT49    | 54.93 | 55.59 | 55.59 | 49.82 | 40.72 | 33.16             | 38.51  | 51.90   | 41.93    | 47.07  | 36.61 | 40.52 | 45.5        | 38.2             |
| DT50    | 45.66 | 47.17 | 47.17 | 46.89 | 43.51 | 35.10             | 43.73  | 39.62   | 37.24    | 38.83  | 38.08 | 43.64 | 42.2        | 35.5             |
| DT51    | 38.47 | 43.80 | 43.80 | 42.35 | 28.31 | 25.55             | 29.80  | 31.99   | 35.16    | 40.84  | 32.58 | 28.09 | 35.1        | 29.5             |
| DT52    | 53.40 | 49.10 | 49.10 | 46.26 | 44.94 | 38.49             | 45.68  | 43.59   | 38.17    | 38.83  | 47.33 | 55.92 | 45.9        | 38.6             |
| DT53    | 80.70 | 81.52 | 81.52 | 73.24 | 72.35 | 59.43             | 64.32  | 68.88   | 74.69    | 58.10  | 58.50 | 72.02 | 70.4        | 59.2             |
| DT54    | 67.11 | 57.08 | 57.08 |       | 34.54 | 36.62             | 46.97  | 51.61   | 47.92    | 51.89  | 54.47 | 54.38 | 50.9        | 42.7             |
| DT55    | 24.48 | 28.95 | 28.95 | 22.56 | 17.32 | 15.25             | 17.94  | 21.35   | 21.18    | 28.26  | 17.59 | 19.35 | 21.9        | 18.4             |
| DT56    | 44.35 | 41.88 | 41.88 | 45.15 | 27.56 | 30.90             | 30.30  | 34.04   | 39.78    | 46.43  | 35.09 | 31.55 | 37.4        | 31.4             |
| DT57    | 29.52 | 31.01 | 31.01 | 29.75 | 20.67 | 19.12             | 20.11  | 23.85   | 22.42    | 29.26  | 23.83 | 21.80 | 25.2        | 21.2             |
| DT58    | 40.34 | 36.32 | 36.32 | 36.62 | 26.65 | 24.11             | 31.40  | 27.99   | 27.57    | 32.72  | 30.17 | 26.08 | 31.4        | 26.3             |
| DT59    | 31.01 | 29.43 | 29.43 | 27.84 | 16.78 | 16.33             | 18.02  | 19.78   | 19.37    | 29.46  | 22.02 | 16.56 | 23.0        | 19.3             |
| DT60    | 31.22 |       |       | 33.38 | 23.65 | 20.03             | 22.29  | 27.27   | 28.05    | 34.24  | 17.62 | 19.04 | 25.7        | 21.6             |
| DT61    | 50.32 | 53.36 | 53.36 | 40.41 | 43.45 | 34.66             | 43.28  | 39.88   | 36.79    | 48.11  | 41.71 | 37.32 | 43.6        | 36.6             |
| DT62    | 26.54 | 33.84 | 33.84 | 33.72 | 23.50 | 21.53             | 25.06  | 27.91   | 24.12    | 38.71  | 24.95 | 31.24 | 28.7        | 24.1             |

<sup>(1)</sup> See Appendix C for details on bias adjustment

## **Appendix C: Supporting Technical Information and Air Quality Monitoring Data QA/QC**

#### C.1 – Supporting Technical Information

Two potentially significant changes to sources were assessed during 2015. Both were assessed through the planning process. First, the proposed new Park and Ride site at Ide, which will increase the number of buses along the Alphington corridor, and second the redevelopment of the city centre bus station and associated changes to the road layout in the city centre. Neither of these is predicted to have a significant adverse impact on air quality, or result in any new exceedence of the objective levels. Monitoring at existing diffusion tube locations on Alphington Road, Alphington Street, Longbrook Street and York Road will measure the effect of these developments as they progress.

#### C.2 – Air Quality Strategy

Exeter City Council updated its Air Quality Strategy in 2015. The strategy is available online at https://exeter.gov.uk/airpollution/.

#### C.3 – Air Quality Action Plan Steering Group

A Steering Group has been set up to inform the production of the new AQAP. The group includes representatives from Devon County Council, Exeter University, Public Health Devon, Public Health England, Teignbridge District Council, Mid Devon District Council and East Devon District Council. Other individuals and organisations will be included if needed, and interest groups will be consulted on the plans at an early stage.

#### C.4 – Air Quality Monitoring Data QA/QC

#### **Diffusion Tube Bias Adjustment Factors - National Factor**

The national bias adjustment factor of 0.91 has been obtained from the spreadsheet version 03/16, for Gradko diffusion tubes (20% TEA in water).

#### **Factor from Local Co-location Studies**

The precision and local bias factor (0.84) for the co-located diffusion tubes at Exeter Roadside (RAMM Queen Street) has been calculated using the spreadsheet shown as Figure C.4.1 below.

**AEA Energy & Environment Checking Precision and Accuracy of Triplicate Tubes** Diffusion Tubes Measurement **Data Quality Check** Automatic Method Coefficient Data Tube 2 Tube 3 Triplicate End Date Tube 1 Standard 95% CI Start Date Period of Variation Capture Precision Monitor dd/mm/yyyy dd/mm/yyyy µgm<sup>-3</sup> Mean Deviation of mear Mean (% DC) (CV) Check Data 07/01/2015 04/02/2015 37.83 35.62 14.0 31.10 98.90 1.6 Good Good 2 04/02/2019 05/03/2015 40.06 39 15.0 33.30 99.40 Good Good 05/03/2019 01/04/2015 40.06 1.7 15.0 34.80 99.40 Good 37.70 Good 4 01/04/2019 29/04/2015 37.75 39.64 39 1.3 12.0 31.60 99.40 Good Good 29/04/2015 27/05/2015 26.09 28.03 27 1.4 12.3 21.70 99.30 Good Good 23.20 27/05/2019 01/07/2019 99.80 Good 6 01/07/2019 29/07/2015 28.80 29 0.4 3.2 19.20 99.70 Good Good 29/07/2015 25.00 99.30 26/08/2015 Good 9 26/08/2015 30/09/2015 37.02 33.12 35 24.8 36.60 96.80 Good Good 10 30/09/2015 28/10/2015 44.60 44.26 44 0.2 38.90 99.60 Good Good 28/10/2015 02/12/2015 28.77 29 0.3 2.8 11 29.21 22.10 99.50 Good Good 02/12/2015 06/01/2015 31.49 22.90 99.70 Good Good 12 30.01 Overall survey precision Precision 10 out of 10 periods have a CV smaller than 20% Site Name/ ID: RAMM (Exeter Roadside) (Check average CV & D0 from Accuracy calculations) (with 95% confidence interval) (with 95% confidence interval WITH ALL DATA Bias calculated using 10 periods of data Bias calculated using 10 periods of data 25% Bias factor A 0.84 (0.77 - 0.92) Bias factor A 0.84 (0.77 - 0.92) 19% (9% - 29%) 35 μgm<sup>-3</sup> 19% (9% - 29%) Bias B Bias B 0% With all data Without CV>20% 35 μgm<sup>-3</sup> Diffusion Tubes Mean: Diffusion Tubes Mean: -259 Mean CV (Precision): Mean CV (Precision): **Automatic Mean:** 29 µgm 29 µgm<sup>-</sup> Automatic Mean: Data Capture for periods used: 99% Data Capture for periods used: 99% Jaume Targa jaume.tarqa@aeat.co.uk Adjusted Tubes Mean: 29 (27 - 32) Adjusted Tubes Mean: 29 (27 - 32) µgm Version 03 - November 2006

Figure C.4.1 Diffusion Tube Precision and Accuracy

#### **Discussion of Choice of Factor to Use**

Data from the tubes are ratified and suspect data is rejected by Exeter City Council, following the procedure in the DEFRA practical guidance. Analysis of the data from the two tubes that are co-located with the continuous analyser shows that these have good precision and a bias factor of 0.84 (Figure C.4.1). This means that the Exeter diffusion tubes over-estimate actual concentrations when compared to the reference method. The nationally collated bias adjustment factor is similar, at 0.91.

Results calculated using the Exeter factor are used in this report because the data capture at Exeter RAMM is over 90%, and it is thought to be more representative of local conditions.

#### **QA/QC** of Automatic Monitoring

Neither of the two TEOMs are part of the national network, however recommended QA/QC procedures from the AURN Local Site Operator's manual are followed, including the filter change frequency and methodology. Horiba also service each analyser every six months. Data capture at the RAMM site was over 90% in 2015, but at the Alphington Street site it was 87%. The low data capture was caused by a pump fault which took some time to repair.

The PM<sub>10</sub> data is collected, validated and ratified by Exeter City Council. Validation involves checking the data daily for instrumentation errors etc and then visually screening the data on a weekly basis to mark any obviously spurious or unusual measurements. The Council also undertakes data ratification on an approximately three monthly basis as well as following site services. This involves:

- Comparison of data with other pollutants and other appropriate AURN network sites (roadside sites and other sites in the south west),
- o Final checking and deletion of data marked as possibly erroneous,
- Removal of data from unrepresentative periods of operation (e.g. road works in immediate vicinity of site etc where data is shown or believed to have been affected),
- Adjustment for issues identified during services etc.

Both the PM<sub>10</sub> analysers are TEOMs. The TEOM method of measuring particulates has failed the EC equivalence test, however advice from DEFRA is that Local Authorities need not replace TEOMs immediately unless PM<sub>10</sub> concentrations are close to the objective level. In Exeter, previous reports have not found that the objective level for particulates is likely to be exceeded and therefore the two TEOMs are still being used. When they are due for replacement, care will be taken to ensure that any new equipment does meet the EC equivalence criteria. In the meantime, the

data has been adjusted for volatiles using the online Volatile Correction Model tool from Kings College, London.

The NO<sub>2</sub> data from Exeter Roadside is collected and ratified by the AURN. Network data from the site can be found at <a href="http://uk-air.defra.gov.uk/data/">http://uk-air.defra.gov.uk/data/</a>. It is ratified every 3 months by NETCEN, and is reported in the QA / QC Data Ratification Report for the Automatic Urban Network. Data capture from the NO<sub>2</sub> analyser was above 90% in 2015.

Plots of hourly average values for nitrogen dioxide and particulate matter are shown below in figures C.4.2 and C.4.3.



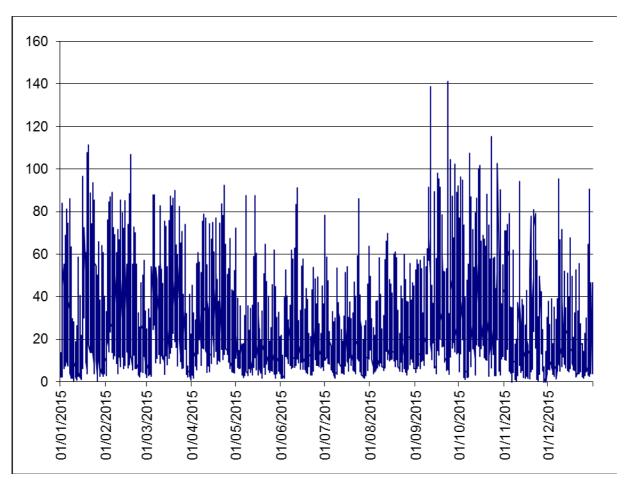
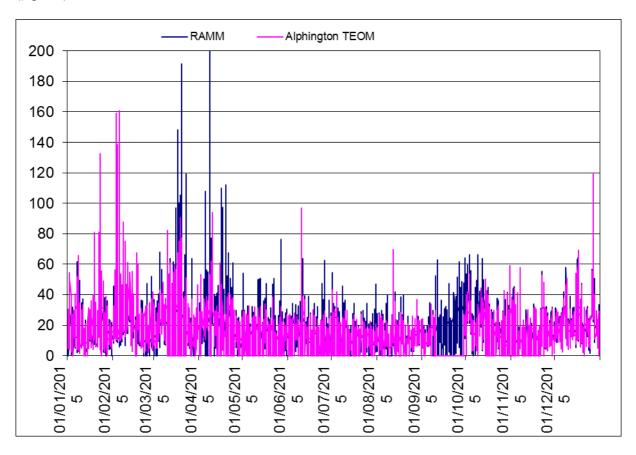




Figure C.4.2 Hourly PM $_{10}$  data from Exeter Roadside (RAMM) and Alphington Street ( $\mu g/m^3$ )



#### **QA/QC** of Diffusion Tube Monitoring

The diffusion tubes are supplied by GRADKO<sup>4</sup> and are prepared using 20% TEA in water. The GRADKO lab follows the procedures set out in the Harmonisation Practical Guidance. The performance of laboratory is rated as satisfactory in the centralised AIR NO<sub>2</sub> PT scheme for quality assurance and quality control.

The tube exposure period used follows the timetable provided by the Air Quality Support Helpdesk, i.e. an exposure time of 4 or 5 weeks, with an allowed variation in exposure time of  $\pm$  2 days. The tubes are stored in a fridge before they are exposed. Location sites and fixings follow the recommendations in the DEFRA practical guidance on the use of diffusion tubes for NO<sub>2</sub> monitoring, published in 2008. Two tubes are collocated with the continuous analyser at the Royal Albert Memorial Museum (RAMM), Queen Street (Exeter Roadside).

<sup>&</sup>lt;sup>4</sup> GRADKO International Ltd., St. Martins House, 77 Wales Street, Winchester, Hants. SO23 0RH

Data from the tubes are ratified and suspect data rejected by Exeter City Council, following the procedure in the DEFRA practical guidance. Analysis of the data from the two tubes that are co-located with the continuous analyser shows that these have good precision.

The full monthly dataset is shown in Table B1 above.

## **Appendix D: Maps of Monitoring Locations**

Please see separate document.

## **Appendix E: Summary of Air Quality Objectives in England**

Table E.1 – Air Quality Objectives in England

| Pollutant                              | Air Quality Objective <sup>5</sup>                      |                |
|----------------------------------------|---------------------------------------------------------|----------------|
|                                        | Concentration                                           | Measured as    |
| Nitrogen Dioxide (NO <sub>2</sub> )    | 200 µg/m³ not to be exceeded more than 18 times a year  | 1-hour mean    |
|                                        | 40 μg/m <sup>3</sup>                                    | Annual mean    |
| Particulate Matter (PM <sub>10</sub> ) | 50 μg/m³, not to be exceeded more than 35 times a year  | 24-hour mean   |
|                                        | 40 μg/m <sup>3</sup>                                    | Annual mean    |
| Sulphur Dioxide<br>(SO <sub>2</sub> )  | 350 µg/m³, not to be exceeded more than 24 times a year | 1-hour mean    |
|                                        | 125 µg/m³, not to be exceeded more than 3 times a year  | 24-hour mean   |
|                                        | 266 µg/m³, not to be exceeded more than 35 times a year | 15-minute mean |

 $<sup>^{5}</sup>$  The units are in microgrammes of pollutant per cubic metre of air ( $\mu g/m^{3}$ ).

## **Glossary of Terms**

| Abbreviation      | Description                                                                                                                                                                                           |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| AQAP              | Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the local authority intends to achieve air quality limit values'    |  |
| AQMA              | Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives |  |
| ASR               | Air quality Annual Status Report                                                                                                                                                                      |  |
| Defra             | Department for Environment, Food and Rural Affairs                                                                                                                                                    |  |
| DMRB              | Design Manual for Roads and Bridges – Air quality screening tool produced by Highways England                                                                                                         |  |
| ECF               | Exeter City Futures                                                                                                                                                                                   |  |
| EU                | European Union                                                                                                                                                                                        |  |
| FDMS              | Filter Dynamics Measurement System                                                                                                                                                                    |  |
| FQP               | Freight Quality Partnership                                                                                                                                                                           |  |
| LAQM              | Local Air Quality Management                                                                                                                                                                          |  |
| LCTF              | Low Carbon Task Force                                                                                                                                                                                 |  |
| LTP               | Local Transport Plan                                                                                                                                                                                  |  |
| NO <sub>2</sub>   | Nitrogen Dioxide                                                                                                                                                                                      |  |
| NOx               | Nitrogen Oxides                                                                                                                                                                                       |  |
| PM <sub>10</sub>  | Airborne particulate matter with an aerodynamic diameter of 10µm (micrometres or microns) or less                                                                                                     |  |
| PM <sub>2.5</sub> | Airborne particulate matter with an aerodynamic diameter of 2.5µm or less                                                                                                                             |  |
| QA/QC             | Quality Assurance and Quality Control                                                                                                                                                                 |  |
| SO <sub>2</sub>   | Sulphur Dioxide                                                                                                                                                                                       |  |

#### References

Exeter City Council 2011. Exeter Air Quality Action Plan 2011-2016. https://exeter.gov.uk/airpollution/

Exeter City Council 2015. Exeter Updating and Screening Assessment Report. https://exeter.gov.uk/airpollution/

Local Air Quality Management Technical Guidance 2016 - LAQM.TG(16)

Diffusion Tubes for Ambient NO<sub>2</sub> Monitoring: Practical Guidance for Laboratories and Users 2008

National bias adjustment factor spreadsheet: http://laqm.defra.gov.uk/bias-adjustment-factors/national-bias.html

Tube precision spreadsheet: www.airquality.co.uk/archive/laqm/tools/AEA DifTPAB v03.xls

Volatile Correction Model website: <a href="http://www.volatile-correction-model.info/">http://www.volatile-correction-model.info/</a>

Devon Local Transport Plans: <a href="http://www.devon.gov.uk/index/transportroads/devon\_local\_transport\_plan.htm">http://www.devon.gov.uk/index/transportroads/devon\_local\_transport\_plan.htm</a>

DEFRA 2015. DEFRA National Statistics Release; Emissions of air pollutants in the UK, 1970 to 2014